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Abstract
The influence of a magnetic field on the hole energy spectra of uniform
and multilayer semiconductor nanocrystals is studied. The calculations are
performed within the k · p method and envelope function approximation.
The valence subband mixing is taken into account by considering a four-band
Hamiltonian. It is found that the influence of a magnetic field depends strongly
on the nanocrystal size and composition. Several phenomena, reported recently
for electrons in multishell nanocrystals in a magnetic field, like crossover from
confinement in the external shell to the internal core in quantum dot quantum
barrier structures or spatial polar separation of the charge density in quantum
dot quantum well systems, are also observed for holes. The calculated optical
electron–hole transitions in small uniform spherical nanocrystals reveal that the
δlL , selection rule, forbidding at B = 0 electron–hole transitions between states
of different orbital angular momentum, is also approximately fulfilled, even at
strong magnetic fields.

1. Introduction

Zero-dimensional semiconductor nanostructures have been intensively studied for the last two
decades [1]. Different techniques for the fabrication of quantum dots allow for far-reaching
manipulation of their sizes, shapes and compositions. To a large extent this permits the tailoring
of their discrete energy levels and consequently their electronic and optical properties.

Of special interest is the investigation of magnetic field effects in such systems. This is
because the weaker quantum confinement and lighter electron effective mass than in atomic
physics makes it possible to observe effects that, for natural atoms, would require magnetic
fields many orders of magnitude stronger than those accessible in the laboratory [1–5].

The ease of fabrication of quasi-two-dimensional quantum dots (by techniques of deep
etching or electrostatic confinement applied to thin quantum wells or doped interfaces) and its
close relation to the quantum Hall effect has resulted in magnetic field studies being almost
exclusively limited to such systems [1]. Two-dimensional systems offer additional facilities
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when the magnetic field is perpendicular to the structure and confinement is modelled by a
parabolic potential. It has to be noticed that, since transport and capacitance spectroscopy
experiments have been most widely used in the experimental study of the energy structure of
single- and many-electron 2D quantum dots, the electron states have mostly been modelled
theoretically.

Very little has been done so far in the study of the influence of a magnetic field on three-
dimensional quantum dots. Some of them, like semiconductor nanocrystals grown in colloidal
solutions by methods of wet chemistry, are particularly interesting. They can be synthesized as
multishell nanocrystals, i.e. built of concentric layers (shells) of different semiconductors with
the shell thickness down to a single monolayer [6–9]. In such structures, electrons and holes
can be localized within very thin spherical-like wells, which greatly enhances the possibilities
of tailoring their optical spectra. Recently, an interesting phenomenon of the transformation
of electron resonant states of multilayer nanocrystals into bound states under the influence of
a magnetic field has been reported [2, 3]. An exhaustive study of the magnetic field effects on
the electron states of such nanocrystals has also been carried out very recently [10].

In this paper we study the influence of a magnetic field on the hole energy levels of uniform
and multishell nanocrystals. To account for the valence subband mixing all the calculations are
performed using the four-band k ·p Hamiltonian. For very high magnetic fields the eight-band
model should probably be more suitable. However, since the split-off band is separated from
the heavy and light hole band by about 400 meV, it is reasonable to analyse the topmost valence
discrete energy levels in the presence of a magnetic field by employing the four-band model
as we do in the present paper.

Since the hole states are determined by the coupling of the p-type Bloch factors with
envelope functions (defined by the nanocrystal shape and external field), the hole energy
spectrum is usually denser than the electron one,with the states of high total angular momentum
being energetically close to the ground state. We show that, unlike the electron case, the
symmetry of the hole ground state of large nanocrystals changes rapidly with increasing
magnetic field. We demonstrate that several interesting phenomena, like crossover from
confinement in the external shell to the internal core in quantum dot quantum barrier systems
or spatial polar separation of the single-particle charge density in quantum dot quantum well
(QDQW) structures, found previously for electron states occur also for hole states.

For uniform quantum dots we also present preliminary results of calculations of the
electron–hole transition rates. In multishell structures the field dependence of the electron [10]
and hole energy levels and thus of optical transitions is less trivial and requires a separate
investigation that is beyond the scope of this paper.

2. Theory and computational details

Let us consider the four-band k · p Hamiltonian that couples the heavy hole and light hole
subbands [11]. This Hamiltonian, represented in the conventional Luttinger–Kohn basis
|J, Jz〉 [12], is

(1)

When zero-dimensional nanostructures are considered, in which the holes can be totally
confined in three dimensions, the envelope function approximation is applied and the elements



Hole energy structure of multishell nanocrystals in a magnetic field 12539

of the Hamiltonian become the operators acting on the components, fi , of the envelope function
of � = ∑

ui fi . In the spherical approximation these operators are (in atomic units)

P = γ1

2
p2, Q = γ

2
(p2

⊥ − 2 p2
z ), L = −i

√
3γ pz p−,

M =
√

3γ

2
p2

−, p± = px ± ipy, p2
⊥ = p2

x + p2
y,

p2 = p2
⊥ + p2

z , pα = −i∇α,

(2)

where γ, γ1 are Luttinger parameters [12], α = x , y or z, and ui are the Bloch functions.
When there is no magnetic field, this Hamiltonian is usually written in spherical

coordinates and results in two coupled differential equations in the radial variable [12]. In
such a case the valence band states are labelled by nQF , where Q denotes the spectroscopic
notation for the lowest value of the envelope angular quantum number L in the wavefunction
�; F is the quantum number of the total angular momentum F = L+ J , where J is the Bloch
angular momentum, J = 3/2, and n labels consecutive states of a given Q and F .

When the external magnetic field is applied the spherical symmetry is broken and the
Hamiltonian (derived in cylindrical coordinates) commutes only with the operator Fz of the
projection of F onto the field axis. The states are labelled by Fz . To identify these states by
their spherical notation at B = 0 we have performed, for B = 0, two sets of calculations in
both coordinates. This allows us to label the states, in cylindrical coordinates, as nQF , Fz .

For B �= 0 the axial approximation could be used to derive the Hamiltonian in cylindrical
coordinates. However, for a more adequate comparison with the results obtained for B = 0,
the so-called spherical approximation with only two Luttinger parameters is employed in all
the cases.

Transforming the Hamiltonian to cylindrical coordinates (ρ, z, φ) and integrating over
the φ angle yields four coupled differential equations (see table 1) for the envelope function
components (i ) f i

M (ρ, z) [13]. The diagonal elements of the equations in table 1 include the
potential energy V (ρ, z), that depends on the actual geometry, composition and structure of
the studied system, and the interaction with an external uniform magnetic field3B = (0, 0, B).

In looking for the bound states of the investigated systems all the envelope function
components are required to vanish for large ρ and z. For multishell structures, V is formed
by the valence band off-sets. Since the hole effective masses and thus γ, γ1 parameters are
different in different layers, appropriate matching conditions should in general be applied at
the corresponding interfaces. In this paper, for simplicity, uniform Luttinger parameters are
considered for all the investigated systems.

The equations presented in table 1 have been solved numerically using the finite-difference
method on a two-dimensional grid (ρ, z) in cylindrical coordinates. The discretization of the
differential equations yields eigenvalue problems of asymmetric huge and sparse matrices
that have been solved by the iterative Arnoldi solver [14] implemented in the ARPACK
package [15].

Optical transition rates between the conduction and valence-band states are calculated
excluding exciton effects. Including Coulomb interaction yields just a parallel rearrangement
of the spectrum (see, e.g., [16]), after a far more complex calculation. In cylindrical coordinates
the electron �e

Fz
and hole �h

Fz
wavefunctions can be written as

�e
Fz

= f e
m(ρ, z)eimφ |S, σ 〉, (3)

3 Magnetic field enters the diagonal terms of the multiband Hamiltonian as − Fz B
2m∗ − B2ρ2

8m∗ , where m∗ is the heavy-hole
or light-hole effective mass and Fz is the quantum number of Fz . One could consider a magnetic field present also
in off-diagonal elements due to the term A · p, where A = (−y/2, x/2, 0)B is the vector potential. The preliminary
analysis shows, however, that the results will not differ significantly.
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�h
Fz

=
Fz+3/2∑

M=Fz−3/2

f h
M (ρ, z)eiMφ |3/2, (Fz − M)〉, (4)

where |S, σ 〉 and |3/2, (Fz − M)〉 are the electron and hole Bloch functions, respectively,
σ = ±1/2, and (m + σ) = Fz . The optical transition matrix element

|〈�e
F ′

z
|p|�h

Fz
〉|2 =

∣∣∣∣
∑

M

∫
f e
m f h

Mρ dρ dz δmM 〈S, σ |p|3/2, (Fz − M)〉
∣∣∣∣
2

= S2
eh |〈S, σ |p|3/2, (Fz − m)〉|2δmM (5)

is a product of the electron–hole overlap S2
eh and the angular part. The δmM symbol has been

kept in equation (5) to make sure that the transition is forbidden when m is different from any
M in the sum. The angular factor is calculated in terms of the square of the Kane parameter
P2 = |〈S|px |X〉|2, after explicitly writing the Bloch factors in terms of the eight band-edge
basis functions {|S, 1/2〉, |S,−1/2〉, |X, 1/2〉, . . . , |Z ,−1/2〉} [17].



Hole energy structure of multishell nanocrystals in a magnetic field 12541

1S3/2

1P

1P
1D
2S

2P
1D
1F

3/2

3/2

3/2

7/2

5/2

5/2

7/2

|Fz|=0.5
|Fz|=1.5
|Fz|=2.5

-0.3

-0.5

-0.7

-0.9

20 60 100
B (T)

E
ne

rg
y 

(e
V

)

Figure 1. Hole energy levels, nQF , for a uniform InAs nanocrystal of diameter d = 6 nm versus
magnetic field. Only components |Fz| = 0.5 (full line), |Fz | = 1.5 (dotted line) and |Fz | = 2.5
(broken line) are shown.

3. Results

3.1. Uniform nanocrystal

Although the main aim of this paper is the study of the influence of a magnetic field on the
energy structure of multishell nanocrystals, for the sake of comparison we also include some
results for uniform nanocrystals [10]. We consider InAs nanocrystals. They can be grown by
methods of wet chemistry as clusters of almost spherical shapes and sizes of 2–10 nm [18].
In our formulation they are modelled by a finite spherical rectangular potential well (4 eV).
Luttinger parameters, γ1 = 19.7 and γ = 8.4, corresponding to heavy hole and light hole
effective masses mhh = 0.345 and mlh = 0.027, are used [19].

We investigate the influence of a magnetic field on the hole energy spectra of two different
InAs nanocrystals of radii 3 and 8 nm. The results are shown in figures 1 and 3(c), respectively.
In the absence of a magnetic field the energies of the ground and first excited states are very
close: for the smaller nanocrystal the ground state is 1P3/2, while for the large one it is
1S3/2. The field dependence of the hole energy levels for the smaller nanocrystal (figure 1) is
almost linear in the whole range of the magnetic field investigated. The quadratic term in the
Hamiltonian (table 1) becomes significant for the larger nanocrystal (see figure 3(c)).

Since the linear term is proportional to Fz , the higher Fz the lower the relative weight
of the quadratic term to the linear one. Thus, for the states of Fz = ± 1

2 the quadratic term
becomes significant even at laboratory fields, while for the states of |Fz | = 5

2 , the linear term
is still dominant even at fields as strong as 50 T. It is the ratio t = ρo/rmax between the radius
of the maximum charge density in the lowest Landau orbit, ρ0, and the radius of the maximum
charge density in a given state, rmax , that decides whether only the linear Zeeman term or also
the quadratic term in the Hamiltonian (table 1) is observed. If t > 1 then only the linear term
is significant.

For the hole states the Landau levels, and thus the corresponding Landau orbits, are not
well defined, since the heavy-hole and light-hole subbands are mixed even at strong magnetic
fields. One can, however, estimate ρ0 as [(2|Fz | + 1) h̄

eB ]1/2 [2]. Since for the states with
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Figure 2. Electron–hole, m → Fz , optical transition rates for a uniform InAs nanocrystal of
diameter d = 6 nm. m = 0: Fz = 1.5 (a), Fz = 0.5 (b), Fz = −0.5 (c), Fz = −1.5 (d) ; m = 1:
Fz = 2.5 (e), Fz = 1.5 (f), Fz = 0.5 (g), Fz = −0.5 (h); m = −1: Fz = 0.5 (i), Fz = −0.5 (j),
Fz = −1.5 (k), Fz = −2.5 (l). For the overlapping spots the order corresponds to the transition
strengths. The spot size is proportional to the calculated transition moment.

|Fz | = 1/2, ρ0 > 3 nm (even at B = 100 T), only the linear term is significant for these states
in the case of the smaller nanocrystal. All the same, ρ0 = 7 nm at B = 25 T and this explains
why the quadratic term becomes significant for the larger quantum dot.

Several anticrossings that are seen in figure 3(c) come from a different evolution (in the
magnetic field) of the states of a given Fz , having for B = 0 a different number of nodes. A
closer inspection of figures 1 and 3(c) shows that the splitting of the energy levels belonging to
a given pair ±Fz can be very different for the pairs of states of the same |Fz |. It can also happen
that the splitting of pairs belonging to different Fz is very similar. E(2S3/2, + 1

2 )−E(2S3/2,− 1
2 )

and E(2S3/2, + 3
2 ) − E(2S3/2,− 3

2 ) is one of the examples. This behaviour is a consequence of
a strong heavy-hole and light-hole subband mixing.

The optical transition rates for transitions between the lowest conduction band and the
highest valence band states for the case of the smaller nanocrystal are shown in figure 2. At
B = 0, the δmM selection rule (see equation (5)) must be supplemented by δl L [20], where
l, L are the orbital angular momentum quantum numbers of the electron wavefunctions and
hole wavefunction components, respectively. In the presence of a magnetic field, the spherical
symmetry is broken: l and L are no longer good quantum numbers. However, the calculated
matrix elements of transitions that are forbidden at B = 0 (like 1s−1P3/2, 1s−1P5/2, 1p−1S3/2,
etc) are very small even at magnetic fields as strong as 50 T. These transitions are not shown
in figure 2. When the magnetic field is about 60 T some of the strong transitions become
negligible. It happens, for example, to the component m = 0 to Fz = 1.5 of the transition
1s → 1S3/2 (see ‘a’ at the top left part of figure 2). Simultaneously the same component of
the transition 1s → 1P3/2, negligible below B = 60 T, becomes very strong. This is due to
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Figure 3. Hole energy levels versus magnetic field of (A) a spherical multilayer
InAs(7 nm)/InP(1 nm)/InAs(3.5 nm) QDQB, (B) the same as A but with a 2 nm external InAs
cladding and (C) a uniform InAs nanocrystal of diameter d = 16 nm.

the anticrossing of the hole states 1P3/2(Fz = 1.5) and 1S3/2(Fz = 1.5) that happens about
this field (see figure 1), where the states exchange their wavefunctions.

3.2. Quantum dot quantum barrier (QDQB)

In this section we consider three-layer nanocrystals built of an internal InAs core of radius
7 nm, a middle InP shell of thickness 1 nm and an external InAs cladding. Two different
nanocrystals having an external InAs cladding of thickness 2 and 3.5 nm have been studied.
Since the forbidden energy gap of InAs is narrower than the gap of InP, the middle shell acts
as a 0.42 eV barrier separating two spherical InAs wells [18]. The surrounding medium is
modelled by a 4 eV external potential barrier. Since we are mainly interested in the states
having energies below the InP barrier and thus small charge density in the barrier region, the
Luttinger parameters of InAs are used in the whole nanocrystal.

The energy levels closest to the top of the InAs valence band edge (Fz =
±0.5,±1.5,±2.5) of the two studied nanocrystals versus magnetic field are presented in
figure 3. The energy levels of the homogeneous InAs QD of radius 8 nm are shown for
comparison. For B = 0, a rearrangement of some energy levels with increasing thickness of
the external cladding, reported previously for electrons [10], is also observed here. The states
having radial nodes are favourable for building a significant charge density in the external
cladding in comparison to the nodeless states. This is illustrated in figure 4, where the contours
of the charge densities (in the absence of magnetic field) of the 2S3/2, 2P3/2 and 3S3/2 states
corresponding to the nanocrystal with thicker external cladding are shown. The 2S3/2 state
builds a large part of the density in the internal core, while 2P3/2 and 3S3/2 states have most of
their density localized in the external cladding.

Figure 3 shows that, except for Fz = ±0.5, the field dependence of the energy levels
of the studied nanocrystals is nearly linear. In both cases many anticrossings can be seen.
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Figure 4. Charge density contours of 2S3/2, 2P3/2 and 3S3/2 hole states of a spherical multishell
InAs(7 nm)/InP(1 nm)/InAs(3.5 nm) QDQB.

The magnetic confinement is more pronounced for the Fz = ±0.5 states, since the radius of
the maximum charge density in the corresponding lowest Landau level is the smallest. The
magnetic confinement is particularly strong for the nodal states of the nanocrystal having the
thicker external clad, like the 2P3/2 and 3S3/2 states, that can build most of their charge density
in the external cladding (see figure 4). These states show the most pronounced quadratic field
dependence and are responsible for many anticrossings that happen even at low magnetic field
(figure 5). A crossover from confinement in the external shell to the internal core produced by
the magnetic field, reported previously for electron states [10], is also observed for the hole
states.

Since the field dependence of the energy levels with |Fz | � 3/2 is almost linear, it happens
that the excited states with very high negative z components of the angular momentum turn
into the ground state when the magnetic field increases. We have calculated this dependence
for Fz up to −41/2. In figure 6 several energy levels with high Fz versus magnetic field, for
the nanocrystal with the thicker external cladding, are shown. The Fz = −3/2 component of
P3/2 is the ground state up to the magnetic field of about 13 T. Then, the state of Fz = −19/2
becomes the ground state; next Fz = −27/2, and later, at about 20 T, Fz = −33/2 (which is
already unbound at B = 0 T). For the quantum barrier nanocrystal with the thinner external
cladding and for the homogeneous InAs nanocrystal this behaviour is similar, although it
happens at higher magnetic fields.
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Figure 5. Hole energy levels versus magnetic field, |Fz | = 0.5, components of a spherical multishell
InAs(7 nm)/InP(1 nm)/InAs(3.5 nm) QDQB nanocrystal.
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Figure 6. Ground state energy and symmetry changes versus magnetic field for a multishell
InAs(7 nm)/InP(1 nm)/InAs(3.5 nm) QDQB nanocrystal.

3.3. Quantum dot quantum well

Let us consider now a three-layer nanocrystal built of an internal barrier-acting InP core, a
middle well-acting InAs shell and an external barrier-acting InP cladding. The radius of the
core is 8 nm, the thickness of the InAs and InP shells is 2 nm, the conduction band offset is
0.42 eV [18] and the height of the surrounding barrier is assumed as 4 eV (from the bottom of
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Figure 7. Hole energy levels versus magnetic field of a spherical multilayer
InP(8 nm)/InAs(2 nm)/InP(2 nm) QDQW nanocrystal.(A) |Fz| = 0.5, (B) |Fz | = 1.5 and
(C) |Fz| = 2.5 components.
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Figure 8. Charge density contours of the 1S3/2 and 2S3/2 hole states of a QDQW nanocrystal.

the InAs well). Since we are investigating the bound states having charge densities localized
mainly in the middle shell, the valence band Luttinger parameters of InAs are used in the whole
structure (γ = 8.4 and γ1 = 19.7).

In figure 7 the lowest energy levels for Fz = ±0.5, ±1.5 and ±2.5 versus the magnetic
field are presented. In contrast to what has been observed for the QDQB systems, the energies
of all the states of the QDQW structure show a quadratic field dependence, even at a relatively
weak magnetic field. This behaviour is similar to that observed in quantum rings [4, 13]. In
both cases the wavefunction of the first state of each symmetry has most of its density localized
in the well or ring (see figure 8). The radius of the maximum of its radial density is, even at low
fields, larger than the radius of the maximum charge density in the lowest Landau level. This
causes a strong enhancement of the quadratic dependence of the energy levels on the magnetic
field.

Comparing the hole energy spectra of the QDQW (figure 7) and QDQB (figure 5) systems,
one can see the absence of the second state of each symmetry in the case of QDQW within the
energy plot range. This effect can be easily explained: in the case of the QDQB, the second
state of each symmetry has a nodal surface in the barrier region. As a consequence its charge
density can localize freely in an internal and/or external InAs well, not leading to any extra
increase of the energy. In the case of the QDQW, the nodal surface is located in a rather thin
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Figure 9. Charge density contours of the 1P3/2 hole state and density differences (1P3/2 − 1S3/2)

for a QDQW nanocrystal. Magnetic fields: B = 0, 50 and 100 T (from top to bottom).

InAs well, so that the charge density has to localize outside of the well, leading to an increase
in the energy of this state (down from the InAs valence band edge). The lowest n = 2 state is
2D7/2 with the energy −0.307 eV.

Another interesting feature of this energy spectrum is that, as for electrons [10], the two
consecutive states of the same Fz approach each other as the magnetic field increases. Thus,
at high fields the spectrum consists of a series of two-fold quasi-degenerate energy levels.
In figure 7 one can see how the pairs (1P3/2, 1/2, 1S3/2, 1/2), (1P3/2,−1/2, 1S3/2,−1/2),
(1P3/2, 3/2, 1S3/2, 3/2), (1P3/2,−3/2, 1S3/2,−3/2), (1D5/2, 5/2, 1P5/2, 5/2), (1D5/2,−5/2,
1P5/2,−5/2), (1D5/2, 3/2, 1P5/2, 3/2), (1D5/2,−3/2, 1P5/2,−3/2), (1D5/2, 1/2, 1P5/2, 1/2),
(1D5/2,−1/2, 1P5/2,−1/2), etc become quasi-degenerate at a high magnetic field. To
understand these effects, the contours of the charge densities for the state 1P3/2, and the
density difference of the 1P3/2 and 1S3/2 states, at B = 0, 50 and 100 T are plotted in figure 9.
When the magnetic field increases, the difference in the charge densities of these two states
drops down to zero. The increasing magnetic field tries to squeeze the charge into the small
Landau orbit, but since it bounces the wide internal InP barrier, the charge concentrates finally
in the two polar regions of the InAs well (see figure 9). In an extremely strong field, in which
the Landau orbit is much smaller than the radius of the internal well, one can consider these
pairs of states as even and odd solutions for a kind of almost 1D double well created by a
cross section of the QDQW potential along the field axis. As an indirect consequence of this
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singular behaviour of the energy levels, the number of anticrossings that occur in QDQW is
much lower than in the QDQB or homogeneous nanocrystals.

Finally we point out that, similar to the QDQBs and homogeneous nanocrystals, the energy
levels with very high |Fz | values undergo a strong ±Fz splitting caused by the linear magnetic
term in the Hamiltonian. This leads to sequential changes of the ground state symmetry as the
magnetic field increases. However, these changes do not occur for consecutive values of Fz

(unit by unit), as happens for the electron states in the QDQW [10] or for electron and hole
states in quantum rings [13].

3.4. Concluding remarks

The influence of a magnetic field on the hole energy spectra of uniform and multishell
nanocrystals has been studied. The results of calculations performed for quantum dot quantum
barrier and QDQW structures reveal fundamental differences between barrier-like and well-like
nanocrystals. Several interesting phenomena, like crossover from confinement in the external
shell to the internal core (in QDQB systems) or spatial polar separation of single-particle
charge density (in QDQW structures), are reported. Calculated optical transitions for small
uniform spherical nanocrystals indicate that the selection rule δlL , which forbids electron–hole
transitions between different angular momenta at B = 0, is also even approximately true in
the presence of a strong magnetic field.
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